一、团队概况
本团队为四川省青年科技创新研究团队,依托“工程材料与结构冲击振动四川省重点实验室”,专注于新型材料与高性能结构研发,以解决军民两用工程中材料与结构的重大安全问题,取得了“碳纤维加热防除冰结构功能一体化复合材料”、“防震防冲击智能控制与主动防护一体化三向隔震技术”、“超高层建筑风振响应理论与试验技术”国外替代产品及技术,并成功应用于建筑、桥梁、军事国防、能源等众多领域的数百项工程,取得了显著的社会经济效益。
团队现有成员7人,其中教授2人,副教授3人,讲师2人,所有成员都拥有博士学位。人员结构合理,知识架构互补性较好,具有较强的团队协作精神和创新意识。
二、主要研究方向
研究方向1:新型材料和结构体系;
研究方向2:结构高性能提升技术;
研究方向3:工程结构智能诊治技术。
三、承担的主要科研项目
1.国家自然科学基金项目,预应力FRP加固腐蚀缺陷压力钢管线的机理研究,51408513,2015-2017.
2.国家重点研发计划子课题,配置纤维增强复合材料筋的混凝土结构性能提升关键技术及其应用技术研究,2017YFC0703003-04,2017-2020.
3.国家自然科学基金项目,多场耦合作用下输电塔线体系抗风可靠度研究,51508482, 2016/01-2018/12.
4.国家自然科学基金项目,微波烧结多物理场耦合过程的实验、建模与模拟方法研究,2016/
01-2018/01.
5.国家自然科学基金青年基金项目,钢格构式塔架结构风振疲劳寿命中几个关键问题研究,51208291,2013/01-2015/12.
6.国家自然科学基金项目, FRP格栅/ECC改良藏式毛石墙体的不规则构造表征参数与力学性能分析方法研究, 51908476, 2020/01-2022/12.
7.四川省青年科技创新研究团队项目,工程材料与结构冲击振动四川省青年科技创新研究团队,2020JDTD0021,2020-2022.
8.四川省国际合作项目,预应力玄武岩纤维加固压力钢管线关键技术研究,2014HH0062,2015-2017.
9.**科技厅重大项目,**民居耐震安全修复加固应用技术研究,藏2012-01-11,2012
-2014.
10.四川省重点研发计划,装配式钢结构住宅成套技术研究与应用,2020YFS0061,2020/01
-2023/12.
11.四川省教育厅项目,复杂环境下玄武岩纤维复合材料(BFRP)力学性能研究,15ZB
0112,2015/01-2017/12.
12.**自治区科技计划项目,高寒高海拔地区装配式轻钢结构住宅建造技术与应用,XZ
202102YD0035C,2021/06-2023/05.
13.**自治区科技计划项目,高原新型耐震藏式石砌建筑关键技术研发与应用,CGZH
2018000014,2018/01-2021/12.
14.四川省科技厅重点研发项目,输油气钢管线防爆限爆关键技术研发与应用,2018SZ0355, 2018/01-2019/12.
15.四川省科技服务业示范项目,文物储藏柜减隔震智能控制与主动防护系统集成产品设计,2018GFW0194,2018/05-2020/05.
16.四川省科技厅重点研发项目,铝内胆碳纤维全缠绕高压气瓶极限温度疲劳寿命研究,2020YFG0183,2020/01-2021/12.
17.地区科学基金项目,藏式古建筑石墙体力学性能及残损机理研究,51568058,2016/01
-2019/12.
18.北京市科技计划项目子课题,复杂环境下高铁站房关键施工技术研究,Z1711000021
17001,2016/01-2018/12.
19.绵阳市科技局项目,玄武岩纤维复合材料工程应用关键技术研究,14G-03-8,2015/
01-2017/12.
20.上海市工程结构安全重点实验室,预应力碳纤维板加固钢梁的协同受力性能研究,20
16-KF06,2016-2018.
21.飞行器结冰与防除冰重点实验室,飞机用纤维复材结冰机理与耐久性研究, AIADL201
80103,2019.04-2020.04.
22.土木工程防灾国家重点实验室开放基金,非线性能量阱控制超高层建筑风振响应的理论与试验研究,2022.1-2024.12.
四、代表性科研成果
1.学术论文
[1] Hao Zhou, Bin Jia, Peng Zhang, Jiajing Li, Hui Huang. Achieve the effective connection
of FRP bars by blocking resistance and adhesive Force: Adhesive-Bolt hybrid joint[J].Composite Structures, 2022.
[2] Bin Jia, Chuntao Zhang, Jie Lian, Hui Huang, Xiang Liu. Tensile behavior of FRP bar butt joints built with new FRP sleeves[J].Structures, 2021.
[3] Hao Zhou, Bin Jia, Hui Huang, Yanling Mou. Experimental Study on Basic Mechanical Properties of Basalt Fiber Reinforced Concrete[J]. Materials,2020.
[4] Chuntao Zhang, Meiqi Gong, Li Zhu. Post-fire mechanical behavior of Q345 structural steel after repeated cooling from elevated temperatures with fire-extinguishing foam[J]. Journal of Constructional Steel Research, 2022, 191: 107201.
[5] Hongjie Zhu, Chuntao Zhang, Shicai Chen, Junjie Wu. A modified Johnson-Cook constitutive model for structural steel after cooling from high temperature[J]. Construction and Building Materials, 2022, 340: 127746.
[6] Bin Jia, Chuntao Zhang, Jie Lian, Hui Huang, Xiang Liu. Tensile behavior of FRP bar joints with new FRP sleeves[J]. Structures, 2021, 3: 1124-1134.
[7] Chuntao Zhang, Yifeng Liu, Chunlin. Huang, Fatigue performance of Q345 structural steel after natural cooling from elevated temperatures[J]. Journal of Constructional Steel Research, 2021, 184: 106811.
[8] Chuntao Zhang, Hongjie Zhu, Li Zhu. Effect of interaction between corrosion and high temperature on mechanical properties of Q355 structural steel[J]. Construction and Building Materials, 2021, 271: 121605.
[9] Chuntao Zhang, Ruheng Wang, Li Zhu. Mechanical properties of Q345 structural steel after artificial cooling from elevated temperatures[J]. Journal of Constructional Steel Research, 2021, 176: 106432.
[10] Chuntao Zhang, Ruheng Wang, Gangbing Song. Effects of pre-fatigue damage on mechanical properties of Q690 high-strength steel[J]. Construction and Building Materials, 2020, 252: 118845.
[11] Chuntao Zhang, Bin Jia, Junjie Wang. Influence of artificial cooling methods on post-fire mechanical properties of Q355 structural steel[J]. Construction and Building Materials, 2020, 252: 119092.
[12] Chuntao Zhang, Ruheng Wang, Gangbing Song. Post-fire mechanical properties of Q460 and Q690 high-strength steels after fire-fighting foam cooling[J]. Thin-walled structures, 2020, 156: 106983.
[13] Liang D, Zheng Y, Fang C, Yam MCH, Zhang CT. Shape memory alloy (SMA)-cable-controlled sliding bearings: development, testing, and system behavior[J]. Smart Materials and Structures, 2020, 29(8): 085006..
[14] Wang QH, Tiwaria N, Hazra B, Lei W, Zhu ZW. MTMDI for Mitigating Wind-Induced Responses of Linked High-Rise Buildings[J]. Journal of Structural Engineering, 2021, 147(4): 06021001.
[15] Wang QH, Tian HR, Qiao HS, Tiwaria N, Wang Q. Wind-induced vibration control and parametric optimization of connected high-rise buildings with tuned liquid-column-damper–inerter[J]. Engineering Structures, 2021, 226: 111352.
[16] Wang QH, Qiao HS, Domenico D, Zhu ZW, Tang Y. Sei**ic performance of optimal Multi-Tuned Liquid Column Damper-Inerter (MTLCDI) applied to adjacent high-rise buildings[J]. Soil Dynamics and Earthquake Engineering, 2021, 143: 106653.
[17] Wang QH, Liu FH, Yu Y. Study on wind-induced response of a large-span roof by using finite particle method[J]. Structures, 2021, 34: 3567-3582.
[18] Wang QH, Tiwaria N, Qiao HS, and Wang Q. Inerter-based tuned liquid column damper for sei**ic vibration control of a single-degree-of-freedom structure[J]. International Journal of Mechanical Sciences, 2020, 184: 105840.
[19] Wang QH, Qiao HS, Domenico D, Zhu ZW. Sei**ic response control of adjacent high-rise buildings linked by the Tuned Liquid Column Damper-Inerter (TLCDI)[J], Engineering Structures, 2020,223:111169.
[20] Zhu ZW, Wei L, Wang QH, Hazra B. Study on Wind-induced Vibration Control of Linked High-rise Buildings by Using TMDI[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 205:104306.
[21] Wang QH, Qiao HS, Li WJ, You YG, Fan Z, Tiwaria N. Parametric optimization of an inerter-based vibration absorber for wind-induced vibration mitigation of a tall building[J], Wind and Structures, 2020,31(3):241-253.
[22] Wang QH, Yu SZ, Ku CJ, Grag A. Combination coefficient of ESWLs of a high-rise building with an elliptical cross-section[J], Wind and Structures, 2020, 31(6):523-532.
[23] Domenico D, Qiao HS, Wang QH, Zhu ZW. Marano, G., Optimal design and sei**ic performance of Multi-Tuned Mass Damper Inerter (MTMDI) applied to adjacent high-rise buildings[J]. The Structural Design of Tall and Special Buildings, 2020, 29(14): e1781.
[24] Wang QH, Fu WD, Yu SZ, Luke A, Garg A, Gu M. Mathematical model and case study of wind-induced responses for a vertical forest[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2018. 179: 260-272.
[25] Wang QH, Li ZY, Garg A, Budhaditya H, Xie ZN. Effects of tuned mass damper on correlation of wind‐induced responses and combination coefficients of equivalent static wind loads of high‐rise buildings[J]. The Structural Design of Tall and Special Buildings, 2019, 28(6): e1597.
[26] Wang QH, Cheng YF, Garg A, Zhu ZW. Characteristics of local wind pressure distribution and global aerodynamic forces on a vertical forest[J]. Ecological Engineering, 2019. 138:61-70.
[27] Huang H, Jia B, Lian J, Wang WW. Experimental investigation on the tensile performance of resin-filled steel pipe splices of BFRP bars[J]. Construction and Building Materials, 2020, 242: 118018.
[28] Huang H, Lian J, Li J, Jia B, Wu Z. Design and Evaluation of a New Resin-Filled GFRP Pipe Connection System for Butt Splicing of FRP Bars[J]. Materials, 2020, 14(1): 161.
[29] Huang H, Wang WW, Brigham JC, Dai JG. Fatigue Behavior of Reinforced Concrete Beams Strengthened with Externally Bonded Prestressed CFRP Sheets[J]. Journal of Composites for Construction, 2017, 21(3): 1-12.
[30] 兰春晏,贾彬,杨勇新,黄辉. 基于深度信念网络的玄武岩纤维增强树脂基复合材料耐久性预测[J].复合材料学报,2020, 37(2): 390-399.
[31] 陈光鹏,张春涛.泡沫灭火后Q460高强钢力学性能试验研究[J].材料导报, 2021, 35(6): 6.
[32] 旷金鑫,张春涛,郝志明,李洪祥. Q420钢管大气腐蚀后的抗侧撞性能[J]. 爆炸与冲击, 2021, 41(2): 11.
[33] 张春涛,邓传力,刘宜丰. 方钢管砂卵石组合圈梁构造柱约束墙体抗震性能试验研究[J]. 建筑结构学报, 2021, 42(3): 24-33.
[34] 张春涛,朱泓杰,王汝恒. Q690高强钢疲劳损伤后力学性能试验研究[J]. 建筑结构学报, 2021, (4): 177-184.
[35] 李家兴,杨勇新,贾彬,李彪,黄辉,赵进阶,王涛. 以弹性模量为指标的CFRP网格单肢耐久性试验研究[J]. 复合材料科学与工程, 2021, (10): 34-41+66.
[36] 黄辉,贾彬,王文炜,张豫,姜世强. 内压作用下CFRP/钢复合管受力性能试验研究[J]. 应用基础与工程科学学报, 2021, 29(4): 1007-1018.
[37] 罗健,石建军,贾彬,莫军,黄辉. 低温暴露对碳纤维/环氧树脂复合材料拉伸力学性能的影响[J]. 复合材料学报, 2020, 37(12): 3091-3101.
[38] 盛鹰,贾彬,王汝恒,陈国平. 一种原子尺度应变定义方法及其在识别微观缺陷演化中的应用[J]. 金属学报, 2020, 56(8): 1144-1154.
[39] 盛鹰,贾彬,王汝恒,陈国平. 基于内聚力模型的复合裂纹耦合扩展多尺度数值模拟研究与实验验证[J]. 材料导报, 2022, 36(4): 195-204.
2.专著
[1] 陶俊林,李丹,刘彤,贾彬. 内爆作用下钢筋混凝土框架结构及承重件的毁伤与评估[M].北京:科学出版社, 2017.
[2] 王汝恒,张春涛,刘潇. 传统农房建造技术改良与案例[M]. 工业建筑出版社, 2018.
3.专利
[1] 贾彬,李旭,王汝恒,戴烽滔,唐易达,张誉,李源,陈晓强. 墙体裂缝灌浆装置. 发明专利ZL 200910216636.9,2011.
[2] 贾彬,谢斌,褚云朋,王汝恒,张誉,李旭,郭文,李源. 老化钢筋混凝土梁复合加固工艺. 发明专利,ZL 201010212787.X,2011.
[3] 贾彬,卢毅,张春涛,王勇,刘潇,王汝恒,张誉. 承压管道损伤修复工艺. 发明专利,ZL 201510416732.3,2017.
[4] 贾彬,王汝恒,薛政,郭文,张春涛,刘潇,黄辉. 架空构件施加环向预应力纤维布的装置. 发明专利,ZL 201611231698.3,2018.
[5] 贾彬,刘潇,褚云朋,张春涛,王汝恒,黄辉. 一种古建筑木结构梁柱体系房屋复合加固方法. 发明专利,ZL 201611193192.8,2019.
[6] 张春涛,邓传力,刘潇,旷金鑫. 装配式钢管混凝土框架-剪力墙结构体系的建造方法. 发明专利,ZL 201810744227.5,2020.
[7] 张春涛,陈光鹏. 用于输电塔的FRP筋-角钢组合横担的制作方法. 发明专利,ZL 201811184344.7,2020.
[8] 张春涛,贾彬,肖靖航. 一种低多层装配式钢筋混凝土框架结构体系建造方法. 发明专利,ZL 201711328265.4,2019.
[9] 张春涛,王汝恒,贾彬,安仁兵. 适用于村镇砌体结构房屋的方钢管砂卵石圈梁-构造柱建造方法. 发明专利,ZL 201710499614.2,2018.
[10] 石建军,苏尧,吴文鑫,杨晋栋,魏王程,王文泽,黄勇. 一种丝束固定成型装置以及丝束成型方法. 发明专利,ZL 202210183409.6,2022.
[11] 贾彬,王壮,刘彤,盛鹰,陈科,蒋巧玲. 复合型隔震装置. 实用新型专利,ZL201821761314.3,2019.
[12] 贾彬,刘彤,王壮,黄辉,杨海涛,盛鹰,陈科,楼柱. 隔震装置及文物展柜. 实用新型专利,ZL201821127997.7,2019.
[13] 贾彬,王壮,刘彤,盛鹰,陈科,蒋巧玲. 一种滚动轴承文物展柜三维隔震装置. 实用新型专利,ZL201821807328.4,2019.
[14] 贾彬,王壮,黄辉,杨勇新. 一种抗拔纤维增强复材筋连接套筒. 实用新型专利,ZL201921137420.9,2020.
[15] 贾彬,赵瑞斌,黄辉,刘潇,牟雁翎. 一种抗爆抗冲击复合墙板. 实用新型专利,ZL202021717505.7,2021.
[16] 贾彬,蔡梓建,王汝恒,石建军,黄辉,张春涛. 一种保温板及其混料设备. 实用新型专利,ZL202122306113.2,2022.
[17] 贾彬,罗健,石建军,黄辉,张晓梅. 一种测量材料表面法向与切向冰黏附强度的装置. 实用新型专利,ZL202021812731.3,2021.
[18] 贾彬,牟雁翎,黄辉,赵瑞斌. 一种高层RC框架结构的缩尺模型. 实用新型专利,ZL202021854474.X,2021.
[19] 贾彬,张鹏,黄辉,王尊勇,蔡梓建. 一种配置纤维连接套筒的FRP筋混凝土构件. 实用新型专利,ZL202021888851.1,2021.
[20] 贾彬,熊海银,姜世强,张豫,朱立,黄辉. 一种新型多功能套筒. 实用新型专利,ZL202122444249.X,2022.
[21] 石建军,任银银,贾彬,罗健,张晓梅. 一种测冰粘附强度的装置. 实用新型专利,ZL202021876494.7,2021.
[22] 石建军,蒲志强,黄勇,杨晋栋. 一种可承受荷载的防除冰碳纤维复合材料结构. 实用新型专利,ZL 202122021297.8,2021.
[23] 黄辉,孟东,蔡梓建,王尊勇,陈柏帆,贾彬. 一种FRP格栅和ECC层加固的藏式毛石墙体. 实用新型专利,ZL 202021608803.2,2021.
[24] 黄辉,孟东,贾彬,王汝恒. 一种藏式毛石墙体. 实用新型专利,ZL 202020466304.8,2020.
[25] 盛鹰,汪磊,贾彬,王汝恒. 用于竖向减振的空气式减振器. 实用新型专利,ZL 202121050144.X,2021.
[26] 盛鹰,贾彬,王汝恒,吴时程. 三向磁力自适应可调式复合隔振装置. 实用新型专利,ZL 202022324046.2,2021.
4.参编规程
[1] 贾彬. 结构加固修复用碳纤维片材(JG/T 167-2016)[S]. 中华人民共和国建筑工业行业标准,2016,参编.
[2] 贾彬. 纤维片材加固修复结构用粘接树脂(JG/T 166-2016)[S]. 中华人民共和国建筑工业行业标准,2016,参编.
[3] 贾彬,纤维增强复合材料加固修复钢结构技术规程(YB/T 4558-2016)[S]. 中华人民共和国黑色冶金行业标准,2016,参编.
[4] 贾彬,结构加固修复用玻璃纤维布(JG/T284-2019)[S],中华人民共和国建筑工业行业标准,2019,参编.
[5] 贾彬,粘钢加固用建筑结构胶(JG/T 271-2019)[S]. 中华人民共和国住房和城乡建设部行业标准,2019,参编.
[6] 贾彬,玄武岩纤维增强复合材料管道及管件(T/CMCA4005-2018)[S],中国冶金建设协会团体标准,2018,参编.
[7] 贾彬,合成纤维沥青混凝土路面技术规程(T/CMCA3008-2020)[S],中国冶金建设协会团体标准,2020,参编.
[8] 张春涛,四川省装配式轻质墙体技术标准(DBJ51/T156-2020)[S]. 四川省工程建设地方标准,2019,参编.
5.获奖
[1] 贾彬. 房屋建筑震后重建关键技术研究与应用. 四川省科技进步奖,二等奖,2012.
[2] 张春涛. 高烈度地区大型高铁站房设计施工成套技术研究. 中国建筑金属结构协会科学技术奖,二等奖,2021.
[3] 张春涛. 高烈度区铁路站房大跨度空间抗震结构施工关键技术研究. 中铁建科学技术奖,二等奖,2019.